If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+9y-18=0
a = 9; b = 9; c = -18;
Δ = b2-4ac
Δ = 92-4·9·(-18)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-27}{2*9}=\frac{-36}{18} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+27}{2*9}=\frac{18}{18} =1 $
| 90=(3x+33) | | 8x²=-11x-7 | | 6x^2+11x-28=0 | | 6x-3-5x=5 | | 4(t-1)=5(t+2) | | 48=(2x+16) | | 2-(-6v+6)=8v+1 | | 8+6a=-2a+24= | | X+5=1/2x-4 | | 15x+11=14x-14 | | -7/6x=-1 | | (2x-3)x(x+4)=90 | | -7/8x=-1 | | 4/k +3=14 | | (25+23x)+(115-35x)=40x+10 | | (10*p*p-10*p+6)/(4p-1)(2p+2)=1 | | x+2/x-7=2 | | 3^x^2+8x+17=9^6x+7 | | 16x-9=11x-64 | | 10*p*p-10*p+6=1 | | 48(a+4)=36(a-4) | | 4x+3=7x+-9 | | 10^(1-x)=6^x | | 39x=87.75 | | 120=(6x+30) | | 10x+36=7x+15 | | 18+5x=-2x-10 | | ((2+3x)/2)+((4-x)/7)=41/14 | | x34.25=87 | | 3y−4=6−2y | | 1+4/y=11/12 | | 15x-19=8x+37 |